pytagi.metric#
Classes#
Classification error metric for Hierarchical Softmax. |
Functions#
|
Calculates the Mean Squared Error (MSE). |
|
Computes the log-likelihood. |
|
Calculates the Root Mean Squared Error (RMSE). |
|
Computes the classification error rate. |
Module Contents#
- class pytagi.metric.HRCSoftmaxMetric(num_classes: int)[source]#
Classification error metric for Hierarchical Softmax.
This class provides methods to compute the error rate and get predicted labels for a classification model that uses Hierarchical Softmax.
Initializes the HRCSoftmaxMetric.
- Parameters:
num_classes (int) – The total number of classes in the classification problem.
- error_rate(m_pred: numpy.ndarray, v_pred: numpy.ndarray, label: numpy.ndarray) float [source]#
Computes the classification error rate.
This method calculates the proportion of incorrect predictions by comparing the predicted labels against the true labels.
- Parameters:
m_pred (np.ndarray) – The mean of the predictions from the model.
v_pred (np.ndarray) – The variance of the predictions from the model.
label (np.ndarray) – The ground truth labels.
- Returns:
The classification error rate, a value between 0 and 1.
- Return type:
float
- get_predicted_labels(m_pred: numpy.ndarray, v_pred: numpy.ndarray) numpy.ndarray [source]#
Gets the predicted class labels from the model’s output.
- Parameters:
m_pred (np.ndarray) – The mean of the predictions from the model.
v_pred (np.ndarray) – The variance of the predictions from the model.
- Returns:
An array of predicted class labels.
- Return type:
np.ndarray
- pytagi.metric.mse(prediction: numpy.ndarray, observation: numpy.ndarray) float [source]#
Calculates the Mean Squared Error (MSE).
MSE measures the average of the squares of the errors, i.e., the average squared difference between the estimated and the observed values.
- Parameters:
prediction (np.ndarray) – The predicted values.
observation (np.ndarray) – The actual (observed) values.
- Returns:
The mean squared error.
- Return type:
float
- pytagi.metric.log_likelihood(prediction: numpy.ndarray, observation: numpy.ndarray, std: numpy.ndarray) float [source]#
Computes the log-likelihood.
This function assumes the likelihood of the observation given the prediction is a Gaussian distribution with a given standard deviation.
- Parameters:
prediction (np.ndarray) – The predicted mean of the distribution.
observation (np.ndarray) – The observed data points.
std (np.ndarray) – The standard deviation of the distribution.
- Returns:
The average log-likelihood value.
- Return type:
float
- pytagi.metric.rmse(prediction: numpy.ndarray, observation: numpy.ndarray) float [source]#
Calculates the Root Mean Squared Error (RMSE).
RMSE is the square root of the mean of the squared errors.
- Parameters:
prediction (np.ndarray) – The predicted values.
observation (np.ndarray) – The actual (observed) values.
- Returns:
The root mean squared error.
- Return type:
float
- pytagi.metric.classification_error(prediction: numpy.ndarray, label: numpy.ndarray) float [source]#
Computes the classification error rate.
This function calculates the fraction of predictions that do not match the true labels.
- Parameters:
prediction (np.ndarray) – An array of predicted labels.
label (np.ndarray) – An array of true labels.
- Returns:
The classification error rate (proportion of incorrect predictions).
- Return type:
float